

Lecture 7

Systems & Laplace Transform

Peter Cheung Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/ E-mail: p.cheung@imperial.ac.uk

PYKC 31 Jan 2025

10 things you have learned about signals (1)

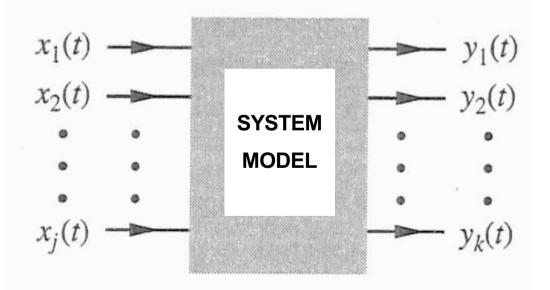
- 1. Signals can be represented in **time domain** or **frequency domain**.
- 2. Any signal can be made up from **weighted sum of sinusoidal** signals.
- A sinusoid at frequency ω and amplitude A can be an everlasting sine wave (A sin ωt), cosine wave (Acos ωt) or exponential (A/2 e^{jωt}). Furthermore, two sinusoids at different frequencies have NOTHING in common.
- 4. For a **time-limited** signal, moving between time and frequency domain is done through **Fourier Transform**.
- 5. A **periodic signal** is represented in the frequency domain in **Fourier series**, where the fundamental frequency f_0 is 1/period of the signal, and all the other frequency are integer multiple of f_0 .

10 things you have learned about signals (2)

- 6. You must sample a signal at a sampling frequency f_s which is **at least twice** that of the maximum signal frequency f_{max} : $f_s \ge 2^* f_{max}$.
- 7. When **sampling signal** at f_s , the **spectrum** of the original signal is **repeated** at EVERY multiple of sampling frequency, i.e \pm nf_s, n = 1, 2, 3...
- 8. If you sample a signal which has a frequency component higher than fs/2, aliasing occurs (which results in **spectral folding**).
- 9. When you **extract** a portion of a signal, you effectively multiply the signal with a **rectangular window**, which results in spreading of energy to neigbouring frequency components. This is known as "**leakage**".
- You can reduce this leakage by multiplying your signal with a special window function which has smooth instead of shape edges.

What are Systems?

- Systems are used to **process signals** to **modify** or **extract information**
- Physical systems characterized by their input-output relationships
- E.g. electrical systems are characterized by voltage-current relationships for components and the laws of interconnections (i.e. Kirchhoff's laws)
- From this, we derive a **mathematical model** of the system
- "Black box" model of a system:



Linear Systems (1)

• A linear system exhibits the additivity property:

if
$$x_1 \longrightarrow y_1$$
 $x_2 \longrightarrow y_2$ then $x_1 + x_2 \longrightarrow y_1 + y_2$

It also must satisfy the homogeneity or scaling property:

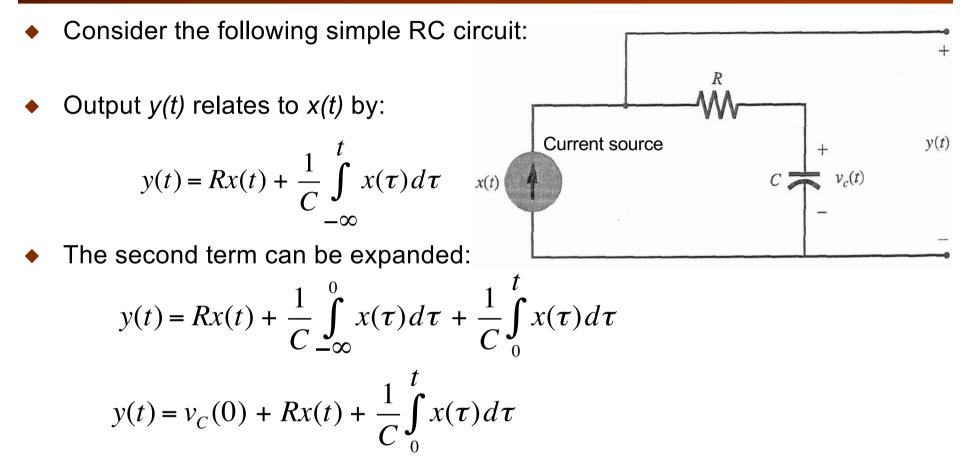
if
$$x \longrightarrow y$$
 then $kx \longrightarrow ky$

• These can be combined into the property of **superposition**:

if
$$x_1 \longrightarrow y_1$$
 $x_2 \longrightarrow y_2$ then $k_1 x_1 + k_2 x_2 \longrightarrow k_1 y_1 + k_2 y_2$

 A non-linear system is one that is NOT linear (i.e. does not obey the principle of superposition)

Linear Systems (2)

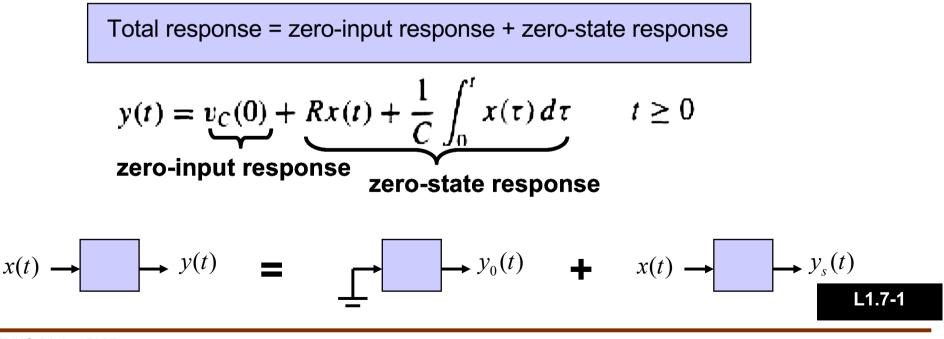


This is a single-input, single-output (SISO) system. In general, a system can be multiple-input, multiple-output (MIMO).

L1.6

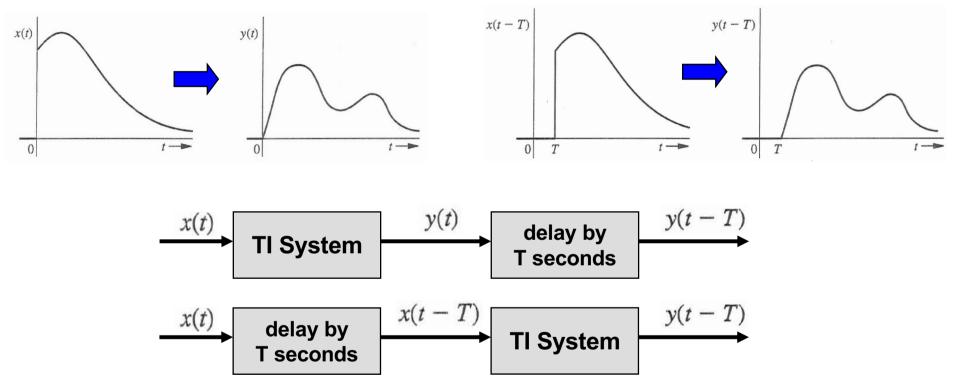
Linear Systems (3)

- A system's output for $t \ge 0$ is result of 2 independent causes:
 - 1. Initial conditions when t = 0 (zero-input response)
 - 2. Input x(t) for $t \ge 0$ (zero-state response)
- Decomposition property:



Time-Invariant Systems

• **Time-invariant system** is one whose parameters do not change with time:

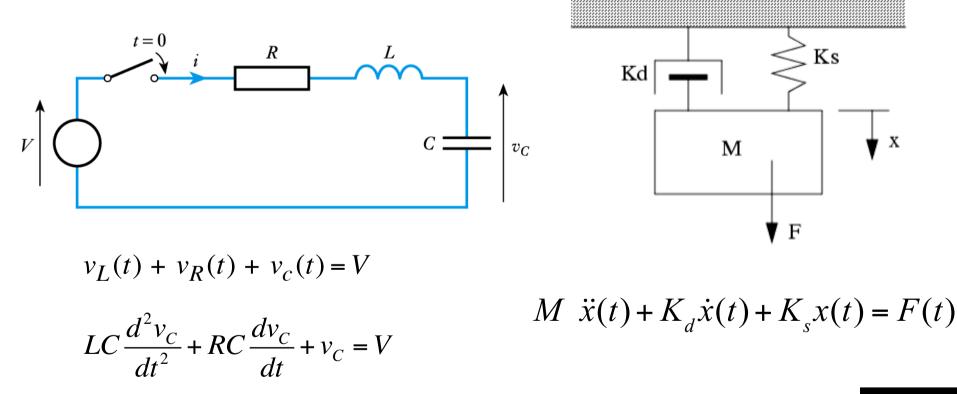


• Linear time-invariant (LTI) systems – main type of systems for this course.

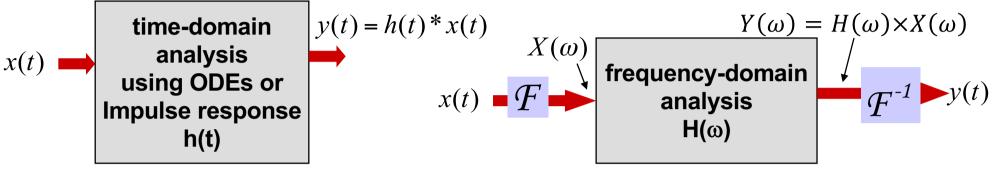
L1.7-2

System modelling using ODEs

- Many systems in electrical and mechanical engineering where input and output are related by ordinary differential equations (ODEs)
- For example:



System Analysis in time and frequency domains



- Analyse system using differential equations or using the system's impulse response h(t) (later lecture)
- Analyse system using frequency response H(ω)
- Analyse system behaviour in time-domain via solving differential equations can be tedious.
- Could use impulse response and **convolution** (later topic), but could be expensive.
- Using Fourier transforms and frequency response to analyse (and predict behaviour of) a system has limitations.
- Frequency response is only useful in predicting steady-state behaviour of a system, not transient behaviour.
- Alternative use Laplace transform to transform both system and signals to the complex Laplace variable, the s-domain.

Laplace Transform (1)

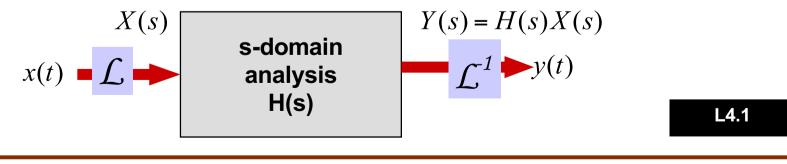
- Laplace Transform is a method that converts differential equations in timedomain into algebraic equations in complex Laplace variable s-domain.
- Definition of Laplace Transform \int , is:

 $\mathcal{L}[X(t) = X(s) = \int_0^\infty x(t)e^{-st}dt$

$$s = \alpha + j\omega$$

$$\mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Fourier Transform



Laplace Transform (2)

• Laplace Transform obeys laws of **linearity**:

$$\mathcal{L}\left[\beta_1 x_1(t) + \beta_2 x_2(t)\right] = \beta_1 \mathcal{L}\left[x_1(t)\right] + \beta_2 \mathcal{L}\left[x_2(t)\right]$$

• The Laplace transform of **an impulse function**:

$$\mathcal{L}[\delta(t)] = \int_0^\infty \delta(t) e^{-st} dt = 1 \qquad \text{for all } s$$

$$\mathcal{L}[\delta(t)] \Leftrightarrow 1$$

• The Laplace transform of a **unit step function**:

$$[u(t)] = \int_0^\infty u(t)e^{-st}dt = \int_0^\infty e^{-st}dt$$
$$= -\frac{1}{s}e^{-st}\Big|_0^\infty = \frac{1}{s} \qquad \text{Re } s > 0$$

$$\mathcal{L}[u(t)] \Leftrightarrow \frac{1}{s}$$

 \mathcal{L}

Laplace Transform (3)

• Laplace Transform of $e^{at} u(t)$:

$$\mathcal{L}[e^{at}u(t)] = \int_0^\infty e^{at} e^{-st} dt$$
$$= \int_0^\infty e^{-(s-a)t} dt = \frac{1}{s-a}$$

$$\mathcal{L}[e^{at}u(t)] \quad \Leftrightarrow \quad \frac{1}{s-a}$$

• Laplace Transform of $\cos \omega_0 t u(t)$:

$$\mathcal{L}[\cos \omega_0 t \ u(t)] = \frac{1}{2} \mathcal{L}[e^{j\omega_0 t} u(t) + e^{-j\omega_0 t} u(t)]$$
$$= \frac{1}{2} \left[\frac{1}{s - j\omega_0} + \frac{1}{s + j\omega_0} \right] = \frac{s}{s^2 + \omega_0^2}$$

$$\mathcal{L}[\cos \omega_0 t u(t)] \quad \Leftrightarrow \quad \frac{s}{s^2 + \omega_0^2}$$

L4.1

Laplace Transform (4)

• Laplace Transform of a **differentiator** $\dot{x}(t) = \frac{dx(t)}{dt}$:

$$\mathcal{L}\left[\frac{dx(t)}{dt}\right] = \int_{t=0}^{\infty} \frac{dx(t)}{dt} e^{-st} dt$$

• It can be shown (using integration by parts) that this result in:

$$\mathcal{L}[\dot{x}(t)] = sX(s) - x(0)$$

- If x(0) = 0 (i.e. zero initial condition), then $\mathcal{L}[\dot{x}(t)] = sX(s)$
- Therefore, differentiation in the time domain is multiplication by s in the sdomain:

$$\frac{d}{dt} \quad \stackrel{\mathcal{L}}{\longleftrightarrow} \quad s$$

Laplace Transform (5)

• Laplace Transform of an **integrator** $\int_{\tau=0}^{t} x(\tau) d\tau$:

Let
$$g(t) = \int_{\tau=0}^{t} x(\tau) d\tau$$

then $x(t) = \frac{dg(t)}{dt}$, and $g(0) = 0$

From last slide

$$\mathcal{L}[x(t)] = \mathcal{L}[\dot{g}(t)] = sG(s) - g(0) = sG(s)$$

Therefore

$$\mathcal{L}[g(t)] = \frac{1}{s}X(s)$$

• Therefore, integration in the time domain is multiplication by 1/s in the sdomain: $r^t = r$

$$\begin{array}{ccc} & \mathcal{L} & \\ & \stackrel{f}{\longleftrightarrow} & s^{-1} \\ & t=0 \end{array}$$

Laplace transform Pairs (1)

- Finding inverse Laplace transform requires integration in the complex plane – beyond scope of this course.
- So, use a Laplace transform table (analogous to the Fourier Transform table).

No.	x(t)	X(s)
* 1	$\delta(t)$	1
* 2	u(t)	1 S
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
		L4.

Laplace transform Pairs (2)

	No.	<i>x</i> (<i>t</i>)	X(s)
*	5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
	6	$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
	7	$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
*	8a	$\cos bt u(t)$	$\frac{s}{s^2+b^2}$
*	8b	$\sin bt u(t)$	$\frac{b}{s^2+b^2}$
*	9a	$e^{-at}\cos bt u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
*	9Ъ	$e^{-at}\sin bt u(t)$	$\frac{b}{(s+a)^2+b^2}$
	0005		

Laplace Transform vs Differential Equations

• Since
$$\mathcal{L}\left[\frac{x(t)}{dt}\right] = sX(s)$$

we can generalise higher order differential as:

Therefore, consider the mechanical system in slide 10:

$$M \ddot{x}(t) + K_d \dot{x}(t) + K_s x(t) = F(t)$$

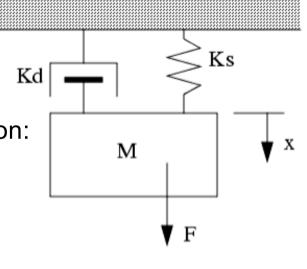
Apply Laplace transform assuming zero initial condition:

$$Ms^{2}X(s) + K_{d}sX(s) + K_{s}X(s) = F(s)$$

$$(Ms^2 + K_ds + K_s)X(s) = F(s)$$

$$\Rightarrow H(s) = \frac{X(s)}{F(s)} = \frac{1}{(Ms^2 + K_ds + K_s)}$$

$$\frac{d^k}{dt^k} \stackrel{\mathcal{L}}{\leftrightarrow} s^k$$



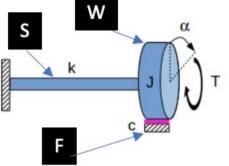
H(s) is

TRANSFER FUNCTION

PYKC 31 Jan 2025

Using Laplace Transform to model a system

Here is another mechanical system with a wheel (taken from last year's examination paper):



- T = external torque on the wheel α = angle of rotation of the wheel J = moment of inertia k = shaft stiffness c = damping coefficent
- The relationship between the wheel angle *α* and the external torque T is given by the following equation:

$$T - k\alpha - c\frac{d\alpha}{dt} - J\frac{d^2\alpha}{dt^2} = 0$$

• Apply Laplace transform assuming zero initial condition:

$$T(s) - k\alpha(s) - cs\alpha(s) - Js^2\alpha(s) = 0$$

Hence,

$$H(s) = \frac{\alpha(s)}{T(s)} = \frac{1}{Js^2 + cs + k}$$

Three Big Ideas

- 1. Laplace transform is useful for analysing systems. It maps time domain behaviour to the complex frequency s-domain where $s = \alpha + j\omega$. This contrasts with Fourier transform which maps to frequency (or ω) domain.
- 2. Laplace transform converts mathematical models of real systems described using differential equations in time domain to algebraic equation in s-domain. This is possible because:

$$\mathcal{L}\left(\frac{d}{dt}\right) = s \text{ and } \mathcal{L}\left(\frac{d^2}{dt^2}\right) = s^2$$

3. Transfer function of a system H(s) is the Laplace transform of the output signal Y(s) divided by the Laplace transform of the input signal X(s):

$$H(s) = \frac{Output Y(s)}{Input X(s)}$$